

MORBIDITY AND MORTALITY WEEKLY REPORT

757 Update: Acquired Immunodeficiency Syndrome-United States
766 Salmonellosis at a Resort Hotel Puerto Rico
767 Rabies Prevention: Supplementary Statement on the Preexposure Use of Human Diploid Cell Rabies Vaccine by the Intradermal Route

Current Trends

Update: Acquired Immunodeficiency Syndrome - United States

As of December 8, 1986, physicians and health departments in the United States had reported 28,098 patients (27,704 adults and 394 children) meeting the acquired immunodeficiency syndrome (AIDS) case definition for national reporting (1-3). Of these patients, 15,757 (56% of adults and 61% of children) are known to have died, including over 79% of those patients diagnosed before January 1985. Since the initial reports of AIDS in early 1981 (4-5), the number of cases reported for each 6-month period continues to increase. However, the increases are not exponential, as evidenced by the lengthening period of time required to double the number of cases (Table 1). During the past 3 months, an average of 58 AIDS cases have been reported to CDC daily. This compares with 35 cases reported during the same period in 1985, 20 cases in 1984, and 10 cases in 1983. Cases have been reported from all 50 states, the District of Columbia, and four U.S. Territories.

Adult patients. Among adult AIDS patients, 25,834 (93\%) are men. There has been no significant change over time in distribution of male patients by age and race. Ninety percent of men with AIDS are 20 to 49 years of age (mean = 36.8 years); 63% are white; 22%, black; 14\%, Hispanic; and 1\%, other or unknown race/ethnicity.

Pneumocystis carinii pneumonia (PCP) continues to be the most common opportunistic disease reported among AIDS patients. Sixty-four percent of men had PCP; 21\% had other opportunistic diseases without PCP; and 15% had Kaposi's sarcoma (KS) alone. Ninety-five percent of patients with KS have been homosexual or bisexual men.

TABLE 1. Acquired immunodeficiency syndrome cases, by date of report and doubling time - United States, through December 8, 1986

Cumulative cases reported	Date*	Doubling time ${ }^{*}$ (months)
110	September 1981	-
220	January 1982	5
439	June 1982	6
878	December 1982	6
1,756	July 1983	7
3,512	February 1984	8
7,025	December 1984	9
14,049	October 1985	11
28,098	December 1986	13

[^0]U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES / PUBLIC HEALTH SERVICE

AIDS - Continued
Women with AIDS have been reported from 41 states, the District of Columbia, and three territories. The number of cases varies greatly by reporting area and ranges from one to 877 (median = 6); seventy-two percent of female cases were reported from Florida, New Jersey, and New York (42% of male cases were reported from these three states). Eighty-eight percent of women reported with AIDS are 20 to 49 years of age (mean $=34.9$ years); 27% are white; 52%, black; 20%, Hispanic; and 1%, other or unknown race/ethnicity. Sixty-seven percent of women had PCP, 31% had other opportunistic diseases without PCP, and 2% had KS alone.

Ninety-seven percent of all adult AIDS patients can be placed in groups* that suggest a possible means of disease acquisition. Homosexual or bisexual men who are not known to have used intravenous (IV) drugs represent 66% of all reported cases (70% of male cases). Heterosexual IV drug users comprise 17% of all cases (15% of male cases and 51% of female cases). Homosexual or bisexual men who have used IV drugs comprise 8\% of all cases (8\% of males). Persons with hemophilia/coagulation disorders represent 1% of all cases (1% of males; 0.4% of females). Heterosexual sex partners of persons with AIDS or at risk for AIDS represent 4% of all cases (2% of males and 27% of females). This latter category includes persons without other identified risks who were born in countries in which heterosexual transmission is believed to play a major role. Recipients of transfused blood or blood components account for 2% of all cases (1% of males and 10% of females). For 3% of AIDS patients (3% of males and 11% of females), the possible means of disease acquisition is undetermined. Except for women with a coagulation disorder, the number of AIDS cases reported per year continues to increase in all patient groups (Table 2).

AIDS patients reported as not belonging to recognized risk groups are investigated by local health officials to determine if possible risk factors exist. Of all AIDS patients reported to CDC who were initially identified as not belonging to a risk group and who were available for followup, 72% have been reclassified because risk factors were identified or because the patient was found not to meet the surveillance case definition. Of the 853 AIDS patients currently listed as not belonging to recognized risk groups, information is incomplete on 206 due to: death (158), refusal to be interviewed (34), or loss to followup (14). Of the remaining 647 patients, 458 are currently under investigation. No risk was identified for 189 patients who were interviewed or for whom other followup information was obtained. However, of those patients responding to a standardized questionnaire, 40/125 (32\%) gave histories of gonorrhea and/or syphilis, and 19 of the 70 men (27%) gave a history of prostitute contact, indicating that these AIDS patients were at potential risk for other sexually-transmitted infections.

The availability of laboratory tests to detect human T-cell lymphotropic virus type III/ lymphadenopathy-associated virus (HTLV-III/LAV) ${ }^{\dagger}$ antibody made it possible to increase the sensitivity and specificity of the AIDS case definition used for national reporting (3). Of the AIDS case reports submitted to CDC, HTLV-III/LAV antibody test results were included for $6,897(24.5 \%)$ of patients (6,558 with recognized risk factors and 339 for whom no risk has been identified). Eighty-nine (1.4\%) of the tested patients with recognized risk factors, compared with 27 (8%) of those without identified risk factors were reported negative for HTLV-III/ LAV antibody ($\mathrm{p}<0.001$).

[^1]TABLE 2. Acquired immunodeficiency syndrome (AIDS) cases reported, by transmission category, by year, and with percentage of yearly increases - United States, through December 8, 1986

Transmission category	$\begin{gathered} \text { Before } \\ 12 / 8 / 82 \\ \hline \text { No. } \end{gathered}$	$\begin{aligned} & \text { 12/9/82- } \\ & 12 / 8 / 83 \end{aligned}$		$\begin{aligned} & 12 / 9 / 83- \\ & 12 / 8 / 84 \\ & \hline \end{aligned}$		$\begin{aligned} & 12 / 9 / 84- \\ & 12 / 8 / 85 \end{aligned}$		$\begin{aligned} & 12 / 9 / 85 \\ & 12 / 8 / 86 \\ & \hline \end{aligned}$		Total
		No.	(\% Inc)*							
Adult male										
Homosexual/bisexual only	562	1,252	(123)	2,720	(117)	5,306	(95)	8,322	(57)	18,162
IV drug user only	98	295	(201)	561	(90)	1,132	(102)	1,674	(48)	3,760
Both homosexual/IV drug user	74	194	(162)	396	(104)	576	(45)	925	(61)	2,165
Hemophilia/coagulation disorder	6	11	(83)	31	(182)	66	(113)	119	(80)	233
Other heterosexual contact										
Sexual contact	1	1	(0)	10	(900)	20	(100)	49	(145)	81
Non-U.S. born ${ }^{\dagger}$	40	68	(70)	96	(41)	111	(16)	146	(32)	461
Transfusion	1	14	(1300)	28	(100)	96	(243)	185	(93)	324
Undetermined	16	51	(219)	81	(59)	158	(95)	342	(116)	648
Male subtotal	798	1,886	(136)	3,923	(108)	7,465	(90)	11,762	(58)	25,834
Adult female										
IV drug user only	26	79	(204)	152	(92)	276	(82)	430	(56)	963
Hemophilia/coagulation disorder	0	0	-	2	-	2	(0)	3	(50)	7
Other heterosexual contact										
Sexual contact ${ }^{+}$	7	20	(186)	47	(135)	100	(113)	230	(130)	404
Non-U.S. born ${ }^{\dagger}$	9	12	(33)	13	(8)	31	(138)	45	(45)	110
Transfusion	2	12	(500)	20	(67)	57	(185)	90	(58)	181
Undetermined	7	17	(143)	24	(41)	65	(171)	92	(42)	205
Female subtotal	51	140	(175)	258	(84)	531	(106)	890	(68)	1,870
Adult subtotal	849	2,026	(139)	4,181	(106)	7,996	(91)	12,652	(58)	27,704
Pediatric	1	41	$(4,000)$	50	(22)	124	(148)	178	(44)	394
Total	850	2,067	(143)	4,231	(105)	8,120	(92)	12,830	(58)	28,098

[^2]${ }^{\dagger}$ Includes persons without other identified risks who were born in countries in which heterosexual transmission is believed to play a major role although precise means of transmission have not yet been fully defined.

AIDS - Continued

Pediatric patients. Among 394 AIDS patients < 13 years of age, 347 (88%) are < 5 years old. Of those, 20% are white; 57%, black; and 22%, Hispanic. Fifty-five percent are male. Fiftytwo percent were diagnosed with PCP, 47% with other opportunistic diseases and no PCP, and 1% with KS alone. Three hundred and eleven (79%) pediatric patients came from families in which one or both parents had AIDS or were at increased risk for developing AIDS; 22 (6\%) had hemophilia and 51 (13%) had received transfusions of blood or blood components before onset of illness. Risk factor information on the parents of the $10(3 \%)$ remaining cases is incomplete. Pediatric patients have been reported from 29 states, the District of Columbia, and Puerto Rico; reported cases per area ranged from one to 141 (median =4). Over $\mathbf{7 2 \%}$ of the 311 pediatric patients who acquired infection perinatally are residents of Florida, New Jersey, and New York.

Other modes of transmission. There continues to be no evidence of nonspecific transmission through casual contact; insect bites; or foodborne, waterborne, or environmental spread among AIDS cases. The situation is most clear in the 5 - to 15 -year-old age group, which lies between the youngest children for whom perinatal transmission is the most important and the adult age groups where sexual and drug related transmission predominates. Five to 15 year olds, who include the majority of school children, comprise 16% of the U.S. population (6). However, only 62 AIDS cases (0.2% of total cases) have occurred in this large group, which is
(Continued on page 765)

TABLE I. Summary - cases specified notifiable diseases, United States

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1986		Cum. 1986
Anthrax			
Botulism: Foodborne	18	Leptospirosis (Ky. 1) Plague	$\begin{array}{r} 38 \\ 8 \end{array}$
Infant	64	Plague Poliomyelitis, Paralytic	$\begin{aligned} & 8 \\ & 1 \end{aligned}$
Brucellosis (Fla. 1)	1	Psittacosis	88
Cholera (Ga. 1)	78 17	Rabies, human	8
Congenital rubella syndrome	17	Tetanus (La. 1)	60
Congenital syphilis, ages < 1 year	107	Trichinosis	31
Diphtheria	107	Typhus fever, flea-borne (endemic, murine) (Tex. 1)	47

There were no cases of internationally imported measles reported for this week.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending December 6, 1986 and December 7, 1985 (49th Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonorrhea (Civilian)		Hepatitis (Viral), by type				Legionet. losis	Leprosy
			Primary	Post-infectious			A	B	NA.NB	Unspecified		
	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	1986	1986	1986	1986	1986	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$
UNITED STATES	11.990	260	1,151	94	834.596	836,455	500	501	74	92	21	233
NEW ENGLAND	469	7	29	3	22,430	21,397	9	49	4	9	-	8
Mane	20	-	2	-	800	1,086	-	1	.	.	-	
NH	13	-	2	-	537	531	-	-	.	-	.	
Vt	5	1	4	2	252	320	2	-	-	-	-	
Mass	252	5	5	-	8.124	8,918	6	35	3	8	-	8
RI	31	1	-	-	1.768	1,769	1	1	-	.	.	-
Conn	148	,	16	1	10.949	8.773	-	12	1	1	-	
MID ATLANTIC	4.394	22	107	10	146.027	121.320	24	52	6	10	-	19
Upstate N Y	469	11	36	6	17,635	17,007	5	17	1	.	-	1
NY City	2,995	1	20	1	84.374	59,095	-	2	.	7	-	17
NJ	662	4	10	-	18,716	18,360	7	16	-	2	-	-
Pa	268	6	41	3	25.302	26.858	12	17	5	1	-	1
EN CENTRAL	718	42	350	11	108,053	109,065	20	39	6	2	6	4
Ohio	154	16	135	3	27.531	29,629	6	10	3	2	4	4
Ind	59	6	81	3	12.010	12,186	3	3	3	2	4	-
Mich	341 126	3 17	50	4	25,465	25,293	1	3	-	-	-	4
Wis	126 38	17	56 28	1.	35.480 7.315	31.466 10.491	10	23	3	-	2	1
W N CENTRAL	230	19	88	10	36,008	39,329	11	13	2	-	2	4
Minn	88	12	39	-	5.172	5,778	4	3	.	-	-	2
lowa	19	2	27	-	3,674	4,173	3	2	-	-	1	-
Mo	73	4	3	-	17.777	19.104	2	7	1	-	.	-
N Dak	3	-	4	1	290	267	.		.	.	-	-
S Dak	2	-	11	-	732	747	1	1	.		-	-
Nebr	11	-	1	1	2.682	3.339	.	-	-	-	1	-
Kans	34	1	3	8	5,681	5.921	1	-	1	-	.	2
S ATLANTIC Del	1.719	26	147	37	216,166	218,349	31	112	10	2	5	3
Md	22	2	6 33	1	3.534 25.752	4.237 27886	1	3	-	.	1	3
D C	180 215	3	33	1	25.752	27.886	7	28	1	-	2	-
Va	1150 150	1	1 40	1	16.235	14.912 18.118	-	3	-	-	-	-
W Va	150 8	2	40	1	17.894	18,118	-	2	-	-	-	1
NC	74	.	45 18	2	2,085 33.717	2,452 34.465	6	1	-	-	-	.
S C	48	1	18	2	33,717 18,399	34,465 20,528	6	14	1	-	2	-
$\mathrm{Ca}^{\mathrm{Gla}}$	262	4	-	1	18,399	20,386	6	7 25	2	1	-	-
Fla	760	12	4	31	62.573	53,365	10	29	6	1	.	2
ES CENTRAL	147	33	63	4	66.555	72,488	-	21	5	3	-	1
Ky Tenn	28	6	30	1	7,396	8,337	-	5	2	3	-	1
Ala	70	5	8	1	25,069	27.787	-	7	2	3	-	-
Miss	25	21	24	2	19.511	21.702	-	8	1	-	-	1
Miss	24	1	1	-	14.579	14.662	-	1	-	-	-	.
W S CENTRAL	1.053	54	182	6	97,663	104,819	51	43	6	21	2	24
La	29	2	10°	2	9,171	9.882	3	2	1	-	.	1
Okla	147	2	16	-	16.970	19,712	8	14	1	2	-	1
Tex	41 836	13	21	\square	11.120	11.731	3	4	1	-	2	,
Tex	836	37	145	4	60.402	63,494	37	23	3	19	-	22
MOUNTAIN	320	4	39	1	24,625	26,627	76	37	5	8	3	13
Mont	4	-	1	1	641	761	-	.	1	-	3	,
Waho	3	-	-	-	820	931	6	1	1	-	-	-
Colo	4 154	-	2	-	510	601	-	.	-	-	-	-
N Mex	154	1	5	-	6.320	7.715	4	-	1	3	-	3
Ariz	23 79	3	3	-	2,613	2.932	30	6	1	1	1	-
Utah	79	3	18	-	7.949	8.129	24	22	-	4	1	7
Nev	35	-	2	-	1,045 4.727	1.281 4,277	7	3 5	1	-	1	1
PACIFIC	2,940	53	146	12	117,069	123,061	278	135	30	37	3	157
Wash	153	13	13	12	8,484	9,505	66	37	+	18	3	17
Oreg	59	-	-	-	5,123	6.041	32	10	4	-	-	-
Calif Alaska	2.666	32	125	12	100,028	102,956	180	81	23	19	3	105
Alaska Hawaı	12 50	2	7	-	2.478	2.965		4	23	1	3	105
Hawan	50	6	1	-	1,208	1,594	-	3	-	.	-	34
Guam	115	-	-		207	186	-	-				
PR	115	1	5	1	2,293	2.967	3	12	-	2	-	7
VI	4	,		-	308	2.962	3	1	-	2	-	7
Pac Trust Terr	-	-	-	-	451	766	2	1	-	1	-	63
Amer Samoa	-	-	-	-	56	,	2	-	-	1	-	63 3

N Not notifiable

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
December 6, 1986 and December 7, 1985 (49th Week)

Reporting Area	Malaria	Measles (Rubeola)					Meningococcal Infections	Mumps		Pertussis			Rubelia		
		Indigenous		Imported *		$\begin{array}{l\|} \hline \text { Total } \\ \hline \text { Cum } \\ 1985 \\ \hline \end{array}$									
	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$		$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	1986	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$
UNITED STATES	1.042	40	5,667	-	292	2.717	2,280	274	5,170	57	4,006	3,344	3	480	601
NEW ENGLAND	63	-	88	-	16	126	160	3	68	14	173	206	-	9	13
Maine	2	-	12	-	1	1	27	.		.	2	9	-	-	3
N.H.	4	.	43	-	.		6	-	14	.	82	112	-	1	3
Vt	2	-	-	-	-	-	19		4	-	3	3	-	1	-
Mass	32	-	24	-	13	118	46		14	14	56	49	-	4	6
RI.	7	-	2	-	-	118	21	2	13	14	6	22	.	2	-
Conn	16	.	7	-	2	7	41	1	23	-	24	11	-	1	4
MID ATLANTIC	145	2	1.731	-	34	232	363	3	206	2	204	247	-	37	228
Upstate N.Y	51	-	77	-	24	85	126	2	68	1	126	119	-	27	18 185
N.Y. City	31	-	723	-	4	79	71	2	29	,	10	29	.	5	185
N.J.	37	-	905	-	4	28	30	-	51	-	20	11	-	5	11
Pa .	26	2	26	-	2	40	136	1	58	1	48	88	-	-	14
EN CENTRAL Ohio	61	32	1,120	-	28	582	340	182	3.373	2	383	807	-	49	38
Ind	19	-	27	-	10	60	137	3	135	-	167	117	-	1	1
III.	16	1	27	-	11	57	38	3	43	1	36	201	-	38°	${ }^{1}$
Mich.	16	31	703	-	4	346	74	124	2.536	i	36	75	-	38	20 16
Wis.	20 4	31	106 284	-	3	60 59	73 17	52	391 268	1	36 105	48 366	-	8 2	1
WN CENTRAL	30	-	324	-	17							247	-	14	19
Minn.	8	\cdot	324 45	-	17 4	12	109 23	10	171 20	2	1.408 48	247 126	-	1	2
lowa	1	-	133	-	1	6	111	5	62	-	19	+33	.	1	1
Mo. N. Dak	12	-	26	-	6	3	39	1	25	2	24	33	-	1	7
S. Dak	2	\cdot	25	-	1	2	1	.	4	-	5	10	-	1	2
Nebr	4	-	1	-	-	-	5	2	1	-	14	5 11	-	-	-
Kans	3	-	94	-	5	1	11 19	2	5 2	-	10 1.288	11 29	-	10	7
S. ATLANTIC	124	-	775	-	56	340				14	763	549	1	12	52
Del	1	-	1	-	56	340	407 5	5	247	14	763 227	549 2	1	,	2
Md.	14	-	26	-	9	115	47	3	29	-	164	317	1	1	6
Da	6	-		-	1	31	47 7	3	29	-	164	31	-	-	2
Wa. Va	33	-	36	-	24	28	71	1	45	9	50	20	-		9
W.C.	4	-	2	-	-	33	4	1	49	9	26	4	-	-	1
N.C.	7	-	3	-	1	9	63	.	28	3	82	35	-		3
S.C	6	-	274	-	-	3	45	.	15	-	18	2	-		-
Ga	13	-	79	-	14	8	58	.	28	1	133	98	$\stackrel{-}{-}$	11	29
Fla.	40	-	354	-	7	113	109	-	51	1	63	71	-	11	
E.S CENTRAL	21	-	63	-	9	7	115	60	224	.	47	69	-	4	3 3
Ky.	6	-	-	-	6	5	26	60	6	-	5	8	-	4	.
Tenn	1	-	57	-	1	1	37	60	213	.	16	27	-	-	-
Ala	10	-	1	-	1	-	38	6	4	-	25	27	-	.	-
Miss.	4	-	5	-	1	1	14	.	1	-	1	7	-		
														71	42
W.S CENTRAL	106	-	680	-	38	452	214	4	272	2	252	548	-	1	1
Ark.	1	-	276		2	452	30		61	-	20	14	-		2
a.	18	-	4	-	2	42	26	-	3	-	15	17 166	-	-	2
Okla.	12	-	37	-	2	1	31	N	N	2	128	166	-	70	39
Tex.	75	-	363	-	34	409	127	4	208	.	89	351	-		6
MOUNTAIN	39	-	303	.	29	541	106	4	252	5	278	224	-	24	2
Mont.	1	-	303	-	8	137	10	4	6	5	20	10	-	-	2
daho	1	-	1	-	.	137	4	1	9	3	49	1	-	1	
Nyo.	12	-	-	.	-	5	2	.	$\overline{7}$	-	4 66	88	-	1	2
Colo.	12	-	2	-	8	15	20	$\stackrel{-}{-}$	17	2	28	13	-	2	1
N. Mex	5	-	33	-	7	6	12	N	N	2	28	40	-	${ }_{1}^{2}$,
Ariz	13	-	252	-	6	241	22	2	195	-	42	53	-	15	1
Utah	4	-	13	-	.	-	10	-	15	-	4	.	-		
Nev .	3	-	2	-	.	-	26	1	10	-	4			260	200
										16	498	447	2	26	14 2
PACIFIC	453 32	6	583 140	-	65	425 142	466	3 1	357 19	2	151	85 50	-	4 233	135
Wash. Oreg.	19	-	7	-	4	5	36	N	N	2	16 298	265	2	233	1
Calif	401	6	409	-	31	254	341	1	306	1	298 5	30	-	6	48
Alaska	-	-	i	-	-	-	14	i	88888	11	31	17	-		3
Hawaii	1	\cdot	27	-	2	24	13	1	24	11			-	4	27
								-	4	-	19	16	-	62	27
Guam	4	-	4 36	-	1	67	4	1	34	-	19	16	1	3	-
V.I.	-	-		-	.	10		-	17	-	-		1	1	
Pac. Trust Terr.	-	-	-	-	-	-	1	-	11	-	.		-		
Amer Samoa	-	-	2	-	-	-	-	-	5						

TABLE III. (Cont'd.) Cases of specified notifiable diseases. United States, weeks ending
December 6, 1986 and December 7, 1985 (49th Week)

Reporting Area	Syphilis (Civilian) (Primary \& Secondary)		Toxic. shock Syndrome	Tuberculosis		$\begin{aligned} & \begin{array}{l} \text { Tula. } \\ \text { remia } \end{array} \\ & \hline \text { Cum } \\ & 1986 \end{aligned}$	Typhoid Fever Cum 1986	Typhus Fever (Tick-borne) (RMSF) Cum 1986	Rabies. Animal Cum 1986
	$\begin{aligned} & \hline \text { Cum } \\ & 1986 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum } \\ & 1985 \\ & \hline \end{aligned}$	1986	$\begin{aligned} & \hline \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$				
UNITED STATES	25.442	25.245	11	20.623	20.112	154	292	738 +	5.059
NEW ENGLAND	464	556	1	635	673	1	16	13	8
Mane	19	16	.	34	45				
NH	10	38	-	23	22			2	1
V t	9	7	-	16	8				2
Mass	253	275	1	353	397	1	13	4	
RI	19	17	-	42	50	.		3	3
Conn	154	203	-	167	151	-	3	4	2
MID ATLANTIC	3.567	3.411	-	4.049	3.558	1	24	40	641
Upstate $\mathrm{N} Y$	172	252	-	590	609		4	20	81
NY City	2,017	2.066	-	2.113	1.749		11	5	
N J	618	653	-	688	479	1	8	2	17
Pa	760	440	-	658	721	-	1	13	543
En central	812	928	1	2.440	2.459	1	23	46	137
Ohio	117	140	1	431	426	.	9	40	16
Ind	108	78	-	262	318	-	2		17
III	370	414	-	1,060	1.073	-	3	2	39
Mich	177	236	-	580	505	1	6	4	25
Wis	40	60	-	107	137	-	,	-	40
W N CENTRAL	198	220	-	606	573	41	9	48	796
Minn	31	44	-	144	119	-	2	1	131
lowa	8	18	-	48	56	1		1	180
Mo	104	121	-	296	277	30	6	24	68
N Dak	5	2	-	10	10	-	.	1	150
S Dak	9	6	-	28	31	3	-	6	178
Nebr	11	7	-	14	18	1		5	35
Kans	30	22	-	66	62	6	1	10	54
S atlantic	7.727	7.227	-	4.154	4.162	13	46	$331+$	1.272
Del	55	36	-	42	42	-	1	1	1
Md	435	476	-	289	379	2	16	29	559
D C	287	318	-	152	146	1	4		31
Va	320	286	-	356	416	3	10	51	192
W Va	20	26	-	115	105	-	3	10	56
NC	502	640	-	624	554	3	4	128	10
S C	656	768	-	527	497	.		71 \|	64
Ga	1.420	1.315	-	700	712	4	\cdot	39	196
Fla	4,032	3.362	-	1.349	1,311	-	8	2	163
es central	1.688	1.963	1	1.836	1.740	15	4	111 t	357
Ky	65	65	-	415	428	7		22	102
Tenn	595	606	-	537	525	6	1	461	138
Ala	486	627	1	567	507	1	1	25	114
Miss	542	665	.	317	280	1	2	18	3
WS CENTRAL	4.945	5.840	5	2.661	2.556	67	30	$138+$	691
Ark	243	314	.	363	299	49	i	16	158
La	877	1.023		393	369	1	1	1	22
Okla	137	180	5	238	236	12	2	103	58
Tex	3.688	4.323	.	1.667	1.652	5	27	181	453
MOUNTAIN	588	731	2	501	542	12	16	10	634
Mont	7	6	1	31	46	1	1	4	204
Idaho	14	7	.	23	25	-	.	2	9
Wro	4	14	-	.	7	1		1	269
Colo	131	206	-	55	85	3	1	3	29
N Mex	68	120	-	94	83	2	1	.	6
Ariz	239	307	-	230	239		9	.	99
Utah	18	11	1	31	21	4	3	-	7
Nev	107	60	-	37	36	1	1	-	11
PACIFIC	5.453	4.369	1	3.741	3.849	3	124	1	523
Wash	152	103	-	203	208	1	3	-	5
Oreg	110	103	-	119	128	-	-	-	1
Calif	5.145	4.092	1	3.204	3.237	1	114	1	509
Alaska	11	4	.	46	95	1	1	.	8
Hawan	35	67	-	169	181	.	6	-	.
Guam	1	2	-	35	38	-	1	-	
PR	819	833	-	310	333	-	5	-	46
VI	1	3	-	1	1	-	.	-	
Pac Trust Terr	246	128	-	89	75	-	49	-	
Amer Samoa	1	-	-	5	.	-	.	-	-

TABLE IV. Deaths in 121 U.S. cities.* week ending
December 6, 1986 (49th Week)

Reporting Area	All Causes, By Age (Yeers)						P\&10- Total	Reporting Area	All Causes. By Age (Years)						$\begin{aligned} & \text { P\& } 11^{\circ} \\ & \text { Total } \end{aligned}$
	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	$\geqslant 65$	45-64	25.44	1-24	<1			$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	< 1	
NEW ENGLAND	824	566	165	50	22	21	64	S ATLANTIC	1.490	895	342	153	46.	53	58
Boston. Mass	207	129	49	15	6	8	24	Atlanta, Ga §	$\begin{array}{r}1.490 \\ \\ \hline\end{array}$	86 86	342 31	$\begin{array}{r}10 \\ \hline\end{array}$	4	1	3
Bridgeport. Conn	68	44	14	6	3	1	6	Baltimore. Md	288	171	64	21	13	19	10
Cambridge. Mass	30	21	7	2	-	-	2	Charlotte. N C	92	66	12	9	1	4	7
Fall River. Mass	43	29	12	1	1			Jacksonville. Fla	150	88	43	14	3	2	9
Hartford. Conn	76	46	19	7	2	2	3	Miami, Fla	95	54	25	13	2	1	1
Lowell. Mass	36	27	9	i		.	2	Nortolk. Va	72	44	7	13	2	6	2
Lynn, Mass New Bedford. Mass	ass $\begin{array}{r}27 \\ 42\end{array}$	23	3	1			2	Richmond, Va	93	52	26	9	3	3	8
New Bedford. Mass New Haven, Conn	ss 42	32	7	2		1	1	Savannah, Ga	47	22	14	6	1	4	2
New Haven, Conn Providence, RI.	49 74	33 54	10	2	2	5	4	St Petersburg. Fla	143	120	17	3	3	-	4
Somerville, Mass	10	54	12	2	1.	5	6	Tampa. Fla Washington D C	75	44 133	21	7	14	2	5
Springfield. Mass	57	43	6	3	5	-	2	Wilmington. Del	288 15	133 15	82	48	14	11.	1
Waterbury. Conn	41	28	8	4	1	-	5	Wilmington. Del	15	15	-	-	-	-	1
Worcester, Mass	64	49	8	3	1	3	7	ES CENTRAL	874	561	217	55	17	24	45
MID ATLANTIC 3								Birminģham, Ala	108	68	31	6	1	2	3
Albany. N Y	3,096	2.009	617	308	71	89	154	Chattanooga, Tenn	55	33	19	2	1	-	1
Allentown. Pa	21	13	10	4	2	2	1	Knoxville. Tenn	67	44	13	5	3	2	10
Buffalo. N Y	175	124	31	9	;		4	Louisville. Ky	93	65	19	5	-	4	3
Camden, NJ	57	41	8	5	2	9	14	Memphis. Tenn	291	187	71	21	6	6	20
Elizabeth, NJ	42	29	8	5	2	1	1	Mobile. Ala	71	46	18	4	2	1	3
Erie, Pa \dagger	49	39	9	.	1	-	2	Montgomery. Ala	45	27	11	2	4	5	2 3
Jersey City. N J	53	37	12	3	1	1	2	Nashville. Tenn	144	91	35	10	4	4	3
NYCity. NY 1	1.613	999	329	197	47	41	68	W S CENTRAL				141	44	68	50
Newark. NJ	98	45	21	23	3	5	3	Austin. Tex	1.490 72	931 43	316	8	5	8	5
Paterson. NJ	31	22	6	3	3	5	4	Baton Rouge, La	72 54	43 35	16 9	6	1	3	3
Philadelphia. Pa	418	264	92	31	11	20	20	Corpus Christi. Tex	59	40	9	6	2	2	1
Pittsburgh. Pa \dagger	82	58	18	2	1	3	9	Dallas. Tex	238	136	45	24	10	23	7
Reading. Pa	22	18	2	1	1	3	2	El Paso. Tex	238 74	136 54	12	- 6	2	2	6
Rochester. N Y	123	93	21	6	.	3	14	Fort Worth. Tex	96	65	24	6	1	-	-
Schenectady. Scranton Pa	33	24	7	2	-	.	-	Houston. Tex	317	183	72	45	3	14	6
Scranton, Pat	32 92	23 70	8 15	1	i	-	-	Little Rock. Ark	77	46	19	7	2	3	3
Trenton, N J	32 35	70	15	4	1	2	6	New Orleans. La	147	87	30	10	5	15	1
Utica, NY	28	24	3	7	-	1	2	San Antonio. Tex	191	118	43	14	11	5	12
Yonkers. $\mathrm{N} Y$	29	24	3	2	-		1	Shreveport. La	50	39	5	3	1	2	1
Honkers. N	29	21	4	2	-	1	5	Tulsa. Okla	115	85	22	6	1	1	5
EN CENTRAL 2	2.653	1,750	581	182	72	68	107	MOUNTAIN	727	463	148	49	24	41	30
Akron. Ohio	97	66	19	7	1	4	107	Albuquerque. N Mex	727 95	463 57	24	9	2	2	4
Canton, Ohio	42	14	15	12	1	4	3	Albuquerque. N Mex Colo Springs. Colo	95 52	57 36	24 9	4	1	2	5
Chicago. III §	564	362	125	45	10	22	16	Denver, Colo	52 143	81	32	6	7	17	5
Cincinnati, Ohio	130	76	37	10	7	22	10	Las Vegas. Nev	143	81 59	32	10	3	4	3
Cleveland, Ohio	165	102	44	12	4	3	1	Ogden. Utah	24	20	2	.	2	-	5
Columbus, Ohio	130	80	33	10	1	6	1	Phoenix, Ariz	136	82	27	12	3	12	1
Dayton. Ohio	161	114	31	8	6	2	5	Pueblo. Colo	136 23	22	27	12	3	1	1
Detroit, Mich	369	229	83	36	15	6	9	Salt Lake City. Utah	43	32	6	2	3	-	2
Evansville, Ind	59	44	10	3	1	1	2	Tucson, Ariz	102	74	16	6	3	3	4
Fort Wayne. Ind	95	68	20	3	2	2	7	Tucson, Ariz	102	74	16	6	3	3	
Gary. Ind	11	6	4	1	-		-	PACIFIC	2,126	1,436	385	182	43	69	113
Grand Rapids. Mich	ch 66	48	12	3	1	2	6	Berkeley. Calif	2, 23	1.14	5	2	-	2	1
Indianapolis, Ind	200	122	60	2	8	8	10	Fresno, Calif	119	88	20	4	1	6	14
Madison. Wis	47	32	9	2	2	2	10	Glendale, Calif	33	28	3	2	-	-	3
Milwaukee. Wis	169	123	32	10	2	2	6	Honolulu. Hawaii	77	46	19	5	4	3	9
Peoria, If	58	48	6	1	-	3	5	Long Beach, Calif	50	36	9	4	-	1	4
Rockford. III.	53	33	8	4	6	2	3	Los Angeles. Calif	546	342	114	56	14	11	21
South Bend, Ind	64	55	6	2	1	2	4	Oakland. Calif.	105	69	17	8	4	7	6
Toledo, Ohio	110	75	20	9	3	3	10	Pasadena. Calif	38	32	2	2		2	1
Youngstown. Ohio	- 63	53	7	2	1	.	.	Portland, Oreg	125	93	22	6	3	1	8
								Sacramento. Calif	184	128	32	16	1	7	12
W N. CENTRAL Des Moines, lowa	945	676	173	45	20	31	56	San Diego. Calif	202	126	33	23	5	13	10
Des Moines, lowa	75	59	10	3	2	1	5	San Francisco. Calif	166	107	32	24	1	2	6
Duluth. Minn.	30	18	8	1		3	1	San Jose, Calif	195	145	30	10	3	7	8
Kansas City, Kans	51	37	6	2	3	3	1	Seattle, Wash	147	97	27	13	6	4	3
Kansas City. Mo	102	70	21	6	1	4	9	Spokane, Wash	56	38	10	4	1	3	6
Lincoln. Nebr	29	21	6	-	1	1	-	Tacoma, Wash	60	47	10	3	1	-	1
Minneapolis, Minn	215	156	35	10	7	7	16								
Omaha, Nebr	115	84	21	7	1	2	10	TOTAL	14,225 ${ }^{+\dagger}$	9.287	2,934	1.165	359	464	677
St Louis. Mo	154	107	32	7	4	4	7								
St Paul, Minn	67	53	9	4	-	1	3								
Wichita, Kans	107	71	25	5	1	5	4								

[^3]§ Data not available. Figures are estimates based on average of past 4 weeks

AIDS - Continued

exposed like other groups to casual contact with HTLV-III/LAV-infected persons, insects, and environmental factors. Of these, 61 (98\%) fit into established risk categories. The risk factor investigation is incomplete on the remaining case.
Reported by State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases, CDC.
Editorial Note: The number of reported AIDS cases continues to increase. An analysis of past trends using empirical models projects a cumulative case total of 270,000 by $1991(7,8)$. The proportion of AIDS cases among most transmission categories has remained relatively constant. The geographic distribution of men and women with AIDS differs significantly ($p<.001$). Most reports of women with AIDS continue to come from Florida, New Jersey, and New York, while these states account for a much smaller proportion of male cases. Since most pediatric AIDS cases result from perinatal transmission of HTLV-III/LAV, the race/ethnicity and geographic distribution of pediatric AIDS patients is similar to that of reported AIDS cases among women.

The proportion of AIDS patients diagnosed with KS is declining (9-11), but most KS (95%) continues to be diagnosed among homosexual or bisexual men. KS alone is infrequently diagnosed among women (3% of cases) and children (4%) with AIDS. The reasons that certain patients develop KS remain unclear (12,13).

Numerous studies and continuing investigations of AIDS patients not belonging to recognized risk groups have not supported the existence of new modes of HTLV-III/LAV transmission (14-17). History of other sexually transmitted diseases among the "no identified risk" group as well as prostitute contact among male AIDS patients suggest that sexual contact with partners whose risk was unrecognized or unreported by the patient may be the mode of HTLV-III/LAV transmission for some of these patients. Given current epidemiologic data, AIDS patients who were born outside the United States and who do not have one of the predominant risk exposures have been moved from the "undetermined" transmission category to the "heterosexual contact" category. This move has increased the "heterosexual contact" category from 2% to 4% of adult cases and has decreased the "undetermined" category from 5\% to 3\%.

The HTLV-III/LAV antibody test allows further refinement of the case definition, especially in disease categories of lower specificity. CDC proposes, with the advice of outside consultants, to revise the case definition for national reporting of AIDS. One major objective of this revision is to increase the sensitivity and specificity of the case definition through greater diagnostic use of HTLV-III/LAV antibody test results.

References

1. CDC. Update: acquired immunodeficiency syndrome (AIDS) — United States. MMWR 1983;32: 688-91.
2. Selik RM, Haverkos HW, Curran JW. Acquired immune deficiency syndrome (AIDS) trends in the United States, 1978-1982. Am J Med 1984;76:493-500.
3. CDC. Revision of the case definition of acquired immunodeficiency syndrome for national reporting-United States. MMWR 1985;34:373-5.
4. CDC. Pneumocystis pneumonia-Los Angeles. MMWR 1981;30:250-2.
5. CDC. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men-New York City and California. MMWR 1981;30:305-8.
6. Bureau of the Census. Table 1: total population including Armed Forces overseas-estimates, by age, sex, and race: 1980 to 1985. In: Estimates of the population of the United States, by age, sex, and race: 1980 to 1985. Washington, DC: Department of Commerce, 1986: (population estimates and projections [series $\mathrm{P}-25$, no. 985]).
7. Public Health Service. Coolfont report: a PHS plan for prevention and control of AIDS and the AIDS virus. Public Health Rep 1986;101:341-8.
8. Morgan WM, Curran JW. Acquired immunodeficiency syndrome: current and future trends. Public Health Rep 1986;101:459-66.
9. CDC. Update: Acquired immunodeficiency syndrome - United States. MMWR 1986;35:17-21
10. Rutherford GW, Echenberg DF, Wu AC, Rauch KJ, Piland TH, Barnhart JL. The epidemiology of AIDS-related Kaposi's sarcoma in San Francisco: evidence for decreasing incidence. Paris, France: International Conference on AIDS, June 23-25, 1986.
11. Selik RM, Starcher ET, Curran JW. AIDS patients reported to CDC: percentages with various infections and cancers. Paris, France: International Conference on AIDS, June 23-25, 1986.
12. Drew WL, Mills J, Hauer L, Miner RC. Declining prevalence of Kaposi's sarcoma in homosexual AIDS patients is paralleled by declining incidence of CMV infection. New Orleans, Louisiana: Interscience Conference on Antimicrobial Agents and Chemotherapy, September 28-October 1, 1986.
13. Mathur-Wagh U, Mildvan D, Senie RT. Follow-up at $4 \frac{1}{2}$ years on homosexual men with generalized lymphadenopathy [Letter]. N Eng J Med 1985;313:1542-3.
14. FischI MA, Dickinson GM, Scott GB, Klimas N, Fletcher MA, Parks W. Heterosexual and household transmission of the human T-lymphotropic virus type III. Paris, France: International Conference on AIDS, June 23-25, 1986.
15. Rogers MF, White CR, Sanders R, et al. Can children transmit human T-lymphotropic virus type III/ lymphadenopathy-associated virus (HTLV-III/LAV) infection? Paris, France: International Conference on AIDS, June 23-25, 1986.
16. Peterman TA, Stoneburner RL, Allen JR. Risk of HTLV-III/LAV transmission to household contacts of persons with transfusion-associated HTLV-III/LAV infection. Paris, France: International Conference on AIDS, June 23-25, 1986.
17. Saltzman BR, Friedland GH, Rogers MF, et al. Lack of household transmission of HTLV-III/LAV infection. Paris, France: International Conference on AIDS, June 23-25, 1986.

Epidemiologic Notes and Reports

Salmonellosis at a Resort Hotel - Puerto Rico

Several state health departments and CDC have received reports of salmonellosis in travelers returning from the Hotel Cerromar, Vega Alta, Puerto Rico. Earlier, in July 1986, CDC received reports about travelers returning from this hotel with Salmonella enteritidis infections. The Puerto Rico Department of Health investigated, and no additional cases were reported until November. At present, several state health departments have obtained preliminary epidemiologic information about additional cases from recently returning groups.

A New Jersey trade association held a convention at the hotel during the period November 1-8. At least 23 of 141 travelers (16%) complained of acute diarrhea. Two were hospitalized for a week in Puerto Rico, and three were hospitalized upon returning. S. enteritidis was isolated from two of these cases. A week later, during the period November 9-19, a New Jersey professional association hosted a convention of 1,400 members and their families at the hotel. The New Jersey State Department of Health contacted a representative sample of the group after receiving a report of four cases in one returning family. The attack rate is estimated to be 10% to 15%; onset dates ranged from November 12 to 22. Eight stool cultures have yielded Salmonella Group D, and six of these have been serotyped as S. enteritidis. A questionnaire followup is underway to determine whether or not further cases have occurred.

A convention of 800 food distributors, primarily from Connecticut and Massachusetts, was held at the same hotel, in two successive groups, during the period November 2-12. Among the 220 Connecticut residents, $16(7 \%)$ reported diarrheal illness within several days after their visit. The Connecticut State Department of Health Services confirmed nine cases of S. enteritidis infection in this group. Followup is underway to more fully evaluate the extent of illness. The Massachusetts Department of Public Health has identified 42 cases $(10 \%$) of diarrheal illness among 442 state residents who had attended the same convention. S. enteritidis has been isolated from nine of these. Other possible cases are being investigated.

Most recently, CDC has received a report of eight cases of diarrheal illness among attendees of a Puerto Rican trade convention at the hotel during the period November 28-30. Thus far, two of five cultures obtained have yielded Salmonella Group D.

Reported by JL Hadler, MD, MPH, State Epidemiologist, Connecticut State Dept of Health Sucs; KM Gallagher, MPH, LM Mofenson, MD, GF Grady, MD, State Epidemiologist, Massachusetts Dept of Public Health; CH Turner, H Rosenfeld, DVM, JW Farrell, MSW, WE Parkin, DVM, State Epidemiologist, New Jersey State Dept of Health; JG Rigau, MD, Commonwealth Epidemiologist, Puerto Rico Dept of Health; Div of Field Svcs, Epidemiology Program Office, Enteric Diseases Br, Div of Bacterial Diseases, Center for Infectious Diseases, CDC.
Editorial Note: Laboratory studies are in progress to determine whether or not the same strain of S. enteritidis caused all of the outbreaks. Reports in both July and November of S. enteritidis gastroenteritis among persons visiting the same hotel suggest a recurrent source. Measures to control the outbreak are being implemented by the hotel management and the Puerto Rico Department of Health. Cases of salmonellosis developing in persons within 1 week after staying at this hotel should be reported to local and state health departments. State health departments are requested to report such cases to the Enteric Diseases Branch, Division of Bacterial Diseases, CDC. Information about the current status of the outbreak can be obtained by calling the Commonwealth of Puerto Rico, Department of Health, (809) 766-2240.

Recommendation of the Immunization
Practices Advisory Committee (ACIP)

Rabies Prevention: Supplementary Statement on the Preexposure Use of Human Diploid Cell Rabies Vaccine by the Intradermal Route

The human diploid cell rabies vaccine (HDCV) produced by the Merieux Institute has been used extensively for preexposure immunization in a regimen of three $0.1-\mathrm{ml}$ doses, one each on days 0,7 , and 21 or 28 . The intradermal (ID) dose/route has previously been recommended by the ACIP as an alternative to the $1.0-\mathrm{ml}$ intramuscular (IM) dose/route for rabies preexposure prophylaxis (1), but. the manufacturer had not met the packaging and labeling requirements necessary to obtain approval by the U.S. Food and Drug Administration (FDA).

Merieux Institute has now developed a syringe containing a single dose of lyophilized HDCV (Imovax ${ }^{\circledR}$ Rabies ID) that is reconstituted in the syringe just before administration. The syringe is designed to reliably deliver 0.1 ml of HDCV and was approved by the FDA on May 30, 1986. Three 0.1 - ml ID doses, given in the lateral aspect of the upper arm, on days 0,7 , and 21 or 28 , are used for primary preexposure prophylaxis. One $0.1-\mathrm{ml}$ ID dose is used for booster vaccination (based on previously outlined criteria [1]). Serologic testing is not necessary after preexposure prophylaxis with HDCV administered by either the ID or IM route. The ID dose/route should not be used for postexposure prophylaxis.

Chloroquine phosphate (administered for malaria chemoprophylaxis) and unidentified factors (that may include multiple concurrent vaccinations) may interfere with the antibody response to HDCV in persons traveling to developing countries $(2,3)$. The IM dose/route of preexposure prophylaxis provides a sufficient margin of safety in this setting (3). HDCV should not be administered by the ID dose/route while a person is receiving chloroquine for malaria chemoprophylaxis. In persons receiving preexposure prophylaxis in preparation for travel to a rabies endemic area, the ID dose/route should be initiated early enough to allow the three-dose series to be completed 30 days or more before departure. If this is not possible, the IM dose/route should be used.

Rabies - Continued
References

1. ACIP. Rabies prevention-United States, 1984. MMWR 1984;33:393-402, 407-8.
2. Bernard KW, Fishbein DB, Miller KD, et al. Pre-exposure rabies immunization with human diploid cell rabies vaccine: decreased antibody responses in persons immunized in developing countries. Am J Trop Med Hyg 1985;34:633-47.
3. Pappaioanou M, Fishbein DB, Dreesen DW, et al. Antibody response to preexposure human-diploid cell rabies vaccine given concurrently with chloroquine. N Eng J Med 1986;314:280-4.

FIGURE I. Reported measles cases - United States, weeks 45-48, 1986

Director, Centers for Disease Control
James O. Mason, M.D., Dr.P.H.
Editor
Michael B. Gregg, M.D.
Director, Epidemiology Program Office
Carl W. Tyler, Jr., M.D.
ロU.S. Government Printing Office: 1987-730-145/40038 Region IV

DEPARTMENT OF

HEALTH \& HUMAN SERVICES
Public Health Service
Centers for Disease Control
Atlanta GA 30333

Official Business

Penalty for Private Use $\$ 300$

Postage and Fees Paid U.S. Dept. of H.H.S. HHC ? OK

X
S *HCRH NEWV 758129 VIROLOGY DIVISION CID 7-E14

[^0]: *Doubling time was calculated in days but is reported here to nearest month.

[^1]: -Patient groups are hierarchically ordered; patients with multiple risk factors are tabulated only in the group listed first.
 ${ }^{\dagger}$ The AIDS virus has been variously termed human T-lymphotropic virus type III (HTLV-III/LAV), lymphadenopathy-associated virus (LAV), AIDS-associated retrovirus (ARV), or human immunodeficiency virus (HIV). The designation "human immunodeficiency virus" (HIV) has been accepted by a subcommittee of the International Committee for the Taxonomy of Viruses as the appropriate name for the retrovirus that has been implicated as the causative agent of AIDS (Science 1986:232;697).

[^2]: *Percent increase.

[^3]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100.000 or more.A death is reported by the place of its occurrence and by the week that the death certificate was filed Fetal deaths are not included
 - Pneumonia and influenza
 \dagger Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week Complete counts will be available in 4 to 6 weeks
 $\dagger \dagger$ Total includes unknown ages.

